Abstract

The overall purpose of this study was to test if using a music-relaxation technique at bedtime improves sleep efficiency in adults who are physically active in the evening. Sleep and exercise are both importan
for health, so addressing/examining strategies to improve sleep after for health, so addressing/examining strategies to improve sleep after evening-exercise would be beneficial for many aduts with busy sherapy improves sleep in adults who exercise in the evening axatio herapy improves sleep in adults who exercise in the evening. Additionally, previous studies examining the impact of music relaxation therapy have measured sleep using self-report questionnaires/diaries
which may result in user bias, whereas my approach uses objective measures of sleep. This study was structured as a randomized, withinsubject, cross-over experimental design. Each participant participated in the study for two weeks with each condition (music vs. no music) lasting one week. During the music condition, participants listened to a 30 -minute standardized music track while in bed at bedtime. Sleep efficiency was measured using wrist-actigraphy devices which tracked leep-wake patterns based on activity counts. Eight individuals met the inclusion criteria and completed the study. Following evening exercise, music did not affect sleep efficiency or any other sleep variables (all $p>$ 0.05). However, we found that music led to a significantly later sleep offset ($p=0.02$) and a marginally longer total sleep time ($p=0.11$) on iights following no exercise. In healthy adult exercisers, listening to music on nights when they did not exercise may be beneficial for sleep.

Background

Exercise and sleep share a reciprocally positive relationship such that adults who exercise are more likely to exhibit better-quality sleep and less like to suffer from
sleep-disordered breathing. Those with better sleep (increased sleep efficiency, shortened sleep onset latency, fewer awakenings after sleep onset, and more deep sleep) exhibit greater exercise exertion and higher physical activity levels.
However, the timing of exercise is important because physiologically, sleep is typically initiated by a decrease in an individual's core body temperature and an
increase in peripheral temperature, which may be altered by evening exercise. increase in peripheral temperature, which may be altered by evening exercise.
There is evidence that strenuous exercise done within $4-6$ hours of the start of the sleep period could ultimately disrupt sleep (1). For many people, late night exercising is unavoidable, but subsequently, their sleep may be impaired in the process.
Music therapy is an easily implemented relaxing agent that may foster sleep and improve sleep quality (2). Studies show that music has a positive effect on the increasing Peripheral Nervous System and decreasing activation of the Sympathetic Nervous System, which decreases one's body temperature and eases the onset of sleep (3).
The purpose of the current study is to determine if evening exercise impacts sleep and if music therapy is efficacious for improving sleep after evening exercise. It is hypothesized that particicipants will exhibit low der sleep efficiency ex nishts after they exercise compared to nights after they do not exercise and
on nater listenig to music before bed will increase sleep efficiency on all nights that listening to music before bed will increase sleep efficiency on all nights compared to control (no music) condition.

References

$$
\begin{aligned}
& \text { Atkinson G, Davenne D. Relationships between sleep, physical activity and human health. } \\
& \text { Physiology \& Behavior 2007;90(2):22-235. }
\end{aligned}
$$ Physiology \& Behavior. 2000;7,000(2):2229-2335.

Warth M, Kessler J, van Kampen J, Ditzen B, Bardenheuer HJ. 'Song of Life': music the
 Chang E-T, Lai H-L, Chen P-W, Hsieh Y-M, Lee L-H. The effects of music on the sleep
quality of adults with chronic insomnia using evidence from polysomnographic and selfquatiry of adults with
reported alysis A ra
$2012 ; 49(8) 921-930$.

Methods and Materials

Study Design: Randomized, within-subject, cross-over experimental, two week desig Each condition (music vs. no music) lasted one week. Participants ($\mathrm{n}=8$, see Table 2 for

 participant information) were randomly assigned to the order of conditions. Procedure:After being screened for eligibility and providing consent to participate (Figure 1 and Table 1), participants completed a demographic questionnaire and were given study instruction bedtime for one week whereas during the no-music condition, participants did not listen any music at bedtime for one week.
The music was standardized and provided to participants. Music ranged from R\&B/soul ballad, light rock, smooth jazz, country, classical and peaceful Buddhist pieces that lasted 35 minutes. Each song was carefully chosen based on its tempo; all songs were between 60 to 80 beats/minute.

- During both conditions, participants engaged in evening exercise at least 3 times per week (Brazilian Jiu-jitsu). Participants attended the same number of Jiu-jitsu sessions on the same nights during both conditions.
Outcome Variable: Nightly sleep was measured objectively using a wrist-worn Actigraph GT3X accelerometer. The device was worn 24/7 for the entire 2 -week study. Participants also completed a daily sleep diary. Sleep efficiency was the primary outcome variable (tigraphically determined total sleep time / sleep period (bedtime to wake time). Statistical Analysis: Paired-sample t-tests were used to compare sleep parameters during the music condition and no-music condition and during nights following exerciser
exercise. A p value <0.05 was considered a statistically significant difference.

Results

	N(0) CN Nean 5 SD
${ }_{\text {a }}^{\text {Afe }}$	33.8 ± 11
	${ }_{\substack{7815) \\ 1(122)}}^{(188)}$
Semer	
Ferme	3 3(17)
	${ }_{\substack{2 \\ 6(15.50)}}^{(200)}$
American Indian or Alaska Native Asian Native Hawaiian or Other Pacific Islander White or Caucasia	
Not Working Working Part-time (20 hours/week) Working Full-time	
${ }_{\text {Yeg }}^{\text {Yeg }}$	
	(ole
Nedid	${ }_{8}^{8(100)}$
${ }_{\substack{\text { Yes } \\ \text { Nos }}}^{\text {y }}$	(

Figure 2. Sleep Efficiency by Exercise and Music Conditions
There were no differences across conditions in Sleep Efficiency (all $p>0.05$).
Table 3 . .No Exercrise
Mean objective sleep $\frac{\text { Objective Sleep Parameters }}{\text { Sleep Onset (hhimm) }}$
Sleep Offset (dh:mm)
Total Sleep Time (min)
Total Sleep Time (min) Wake After Sleep Onset (min) Sleep Efficiency ${ }^{4}$ (\%) Sleep Fragmentation Ind Sleep Fragmentation Index ${ }^{6}$

Discussion
We found that sleep parameters, including sleep efficiency, were not different on nights following exercise or no exercisis. Furthermore, we did not observe differences by music
condition in sleep efficiency (Figure 2, Tables $3 \& 4$ 4). However, we did find that on condition in sleep efficiency (Figure 2, Tables $\mathbf{3}$ \& 4). However, we did find that
nights when participants did not exercise, listening to music before bed led to a significantly later wake time and 11.5 more minutes of sleep (Table 3). In conclusion, the data did not support our hypothesis.

Previous studies have shown poorer sleep following evening exercise; however, these studies measured sleep using self-report. Therefore, music and exercise may impact an individual's perception of their sleep without impacting objective measures of sleep. always align and this is particularly true for women.

The current study had the following strengths and limitations.
First, the sample size was small due to difficulty with recruitment. We chose to enrol adults who were regular exercisers at moderate-to-high intensity. Therefore, future
studies should determine the effect of music and exercise on sleep in those who are not as physically active to increase generalizability.
Second, sleep was measured using wrist actigraphy. Music and exercise may influence aspects of sleep (e.g., sleep architecture) that are not captured by this method. Future studies should measure sleep using multiple methods to determine how music and exercise impact sleep.
Finally, the music playlist was pre-determined rather than selected by participant. Therefore, music may benefit sleep to a greater degree if participants are able to elect music they like.
he well-controled experimental design, carefuily selected participants based on inclusion/exclusion criteria, and objective measurement of sleep were all study trengths.

Acknowledgements

Thank you to the following for making this research opportunity possible

 Rutgers University School of Environmental \& Biological Sciences; Rutgers University Departme the Lab Coordinator: Emily Wasson; Aresty Research for Undergraduates/Fellowship Grant Program; the participants; Jaguar Brazilian Jiujitsu (site of recruitment and orientations);my Mom, Dad, brother and sister. my Mom, Dad, brother and sister

