Abstract

The majority of adolescents do not habitually obtain sufficient sleep. In
adolescents, insufficient sleep has been linked with increased risk for adolescents, insufficient sleep has been linked with increased risk for depressed mood, car accidents, and poor academic achievement. There
is a lack of research regarding the impact of sleep on adolescent is a lack of research regarding the impact of sleep on adolescent as a protective factor for teens. The purpose of this study was to determine if increasing time-in-bed for sleep to $10 \mathrm{~h} / \mathrm{night}$ for one we using an individualized approach would improve mood and cognitive performance in high-school students. Eight high school students (14-17y) exhibiting habitual short sleep (<7.5h/night) were enrolled in the study. During orientation and follow-up visits, participants completed the Profile orientation and follow-up visits) participants were prescribed a bed time and wake time, provided with time management and sleep hygiene strategies, and received payment contingent upon adherence to the assigned sleep schedule in order to ensure that participants increased time-in-bed for sleep to 10 hours per night. A paired-sample t-test was the week-long sleep extension protocol. Six of the 8 enrolled participants completed the study. Mood was significantly improved after sleep extension (anger-hostility: $p=0.013$, fatigue-inertia: $p=0.027$, total mood disturbance $p=0.055$); however, cognitive performance did not change (all $p>0.05$). Findings provide additional evidence about the importan helping teens obtain sufficient sleep for promoting optimal mood.

Background

It is currently recommended that children aged 6-12 y obtain 9-12 hours of sleep per night and children aged 13-18 y obtain 8-10 hours of sleep per recommendations (1).
Evidence consistently demonstrates that obtaining insufficient sleep associates with adverse physical and psychological health outcomes. In adolescents, insufficient suseep has been linked with increased risk fo
depressed mood and suicidality, car accidents, and poor academic achievement (2).Even one night without sleep increases anger, fatigue, confusion, anxiety and decreases energy levels in this age group (3).
One way to increase sleep duration in teenagers is to delay school start time. However, this requires major transportation and school scheduling changes and findings have been mixed in terms of its efficacy. Individualized approaches, taking into account the teen's busy schedule and providing time management tools, may be more beneficial. For academic, social, and work obligations in order to determine consistent bedtime and wake time goals that should be set in order to achieve sufficient sleep.
The purpose of this study is to determine if increasing time-in-bed for sleep to $10 \mathrm{~h} /$ night for one week using an individualized approach will impact mood and cognitive performance in adolescents. It is hypothesized that, relative to baseline, adolescents who are short sleepers will exhibit improved mood, decision-making and sustained attention and decreased References

1. Wheaton AG, Jones SE, Cooper AC, Croft JB, Short Sleen Duration Among Middle School
and High School Students - United States, 2015. Morbiditity and Mortality Weekly Report.

 in children: Eftects on teacher ratings. Sleep. 2005; 28(12):1561-1567.
2. Short MA, Louca M. Sleen deprivation leads to mood deficits in healthy adolescents.
Sleep Medicino. 2015;16(8):987-993. Sleep Meaicine. 2015:16(8):987-993.
3. Researh. Cognitive Tasks. https://admin.joggleresearch.com/Home/Tasks. Accessed
March 1 . 2019

Methods and Materials
Participants: Subjects were recruited from the New Brunswick, New Jersey area. Individuals were contacted for a phone screening and eligible individuals were invited to the sleep center for an orientation. To be included, subjects were between the ages of 14 and 17 , sleep approximately 7 hr /night on school nights, willing to wear a wrist actigraph daly a
complete all study related tasks. If a subject exhibited a sleep disorder, had excessive intake of caffeine ($>300 \mathrm{mg} / \mathrm{day}$), participated in drug or alcohol use, or had participated in trans meridian travel during past month, they were excluded from
the study. See Figure 1 for a diagram of participant flow and Table 1 for participant characteristics.
Procedures: Enrolled participants completed the Profile of Mood States, Balloon Analogue Risk Task (BART) and Psychomotor Vigilance Test (PVT) (4) during an orientation visit and then a follow-up visit that occurred after one week of sleep extension. During the week of sleep extension, participants followed a preschbed bedtime and wake time in order to be in bed for 10 hours per night. Study staff worked with each participant on sleep hygiene and time management strategies to help them achieve the desired schedule and participants were paid based on adherence (up to $\$ 10 /$ day).
Sleep was objectively measured using a wrist actigraph. The device was worn on the participant's non-dominant wrist across the 24 -hour period and monitors motor activity to obtain continuous recordings of sleep-wake states.
Outcome Variables: The POMS captures both stable/trait mood, for examining between-subjects variability, as well as transitory/state mood, for examining within-subjects variability over time. See Table 2 for POMS outcome variables. The BART measures risk taking and decision making. During the BART, participants need to inflate a balloon on the screen to maximize the receipt of a monetary reward but receive nothing if the balloon pops. Like a real balloon, the risk for the popping becomes greater as it inflates.. The PVT measures sustained attention. During the PVT, participants were shown an empty rectangle and then at random intervals, a counter would appear within the rectangle which counted
up in msec. Participants were instructed to respond by tapping the screen as soon as they saw the stimulus (msec up in msec. Participants were instructed to respond by tapping the screen as soon as they saw the stimulus (msec
counter) appear in the rectangle as quickly as possible but also not to respond unless they saw the counter appear Statistical Analysis: Paired-samples t-tests compared each POMS, BART and PVT variable before (pre) and after (post) the week-long sleep extension protocol. A p value <0.05 will considered a statistically significant difference.

Results

Figure . Conasor Diagram

Balloon Analog Risk Task

Discussion

This study was conducted in order to determine if increasing sleep in adolescents would impact their mood and cognitive function. Participants who previously averaged 7 hours of sleep per night before starting this
study, followed a prescribed bed time and wake time. We found that one week of sleep extension led to significant improvements in mood, weecifically decreased mood disturbance. Mood disturbance is the difference between negative and positive mood such that high scores reflect greater negative mood whereas lower scores reflect greater positive mood. When examining each component of the Profile of Mood States test, we found that Anger-Hostility and Fatigue-Inertia were significantly decreased (Figure 2 and Table 2)
No changes in BART or PVT performance were observed before and after week-long sleep extension in high school students (Table 3). Although we we did observe faster response speeds, reductions in attention lapses, and improved overall score after week-long sleep extension in high school students. These findings are consistent with a large number of studies showing that performance on the PVT is worse in the context of sleep loss
and improves with better sleep, sleep recovery and sleep extension. and improves with better sleep, sleep recovery and sleep extension.
The sleep data collected objectively during the week-long sleep extension
period (Table 4) show that particicants followed their prescribed bedtime period (Table 4) show that participants followed their prescribed bedtime
and wake time for the entire week and were able to increase sleep to 8.5 hours/night. The sleep efficiency of participants remained above 85%, which is considered good quality sleep.
Findings support the importance of obtaining sufficient sleep for optimizing
mood and sustained attention in high school students and that the individualized approach to sleep extension is effective in this age group.

Acknowledgements

Thank you to Dr. Andrea Spaeth for the opportunity to take part in this project and to Emily Wasson for their time and patience in training me. Thank you to the Aresty Center for providing me with the Undergraduate
Research Fellowship.

